Chronic blockade of hindbrain glucocorticoid receptors reduces blood pressure responses to novel stress and attenuates adaptation to repeated stress.
نویسندگان
چکیده
Exogenous glucocorticoids act within the hindbrain to enhance the arterial pressure response to acute novel stress. Here we tested the hypothesis that endogenous glucocorticoids act at hindbrain glucocorticoid receptors (GR) to augment cardiovascular responses to restraint stress in a model of stress hyperreactivity, the borderline hypertensive rat (BHR). A 3- to 4-mg pellet of the GR antagonist mifepristone (Mif) was implanted over the dorsal hindbrain (DHB) in Wistar-Kyoto (WKY) and BHRs. Control pellets consisted of either sham DHB or subcutaneous Mif pellets. Rats were either subjected to repeated restraint stress (chronic stress) or only handled (acute stress) for 3-4 wk, then all rats were stressed on the final day of the experiment. BHR showed limited adaptation of the arterial pressure response to restraint, and DHB Mif significantly (P </= 0.05) attenuated the arterial pressure response to restraint in both acutely and chronically stressed BHR. In contrast, WKY exhibited a substantial adaptation of the pressure response to repeated restraint that was significantly reversed by DHB Mif. DHB Mif and chronic stress each significantly increased baseline plasma corticosterone concentration and adrenal weight and reduced the corticosterone response to stress in all rats. We conclude that endogenous corticosterone acts via hindbrain GR to enhance the arterial pressure response to stress in BHR, but to promote the adaptation of the arterial pressure response to stress in normotensive rats. Endogenous corticosterone also acts in the hindbrain to restrain corticosterone at rest but to maintain the corticosterone response to stress in both BHR and WKY rats.
منابع مشابه
Elevated corticosterone in the dorsal hindbrain increases plasma norepinephrine and neuropeptide Y, and recruits a vasopressin response to stress.
Repeated stress and chronically elevated glucocorticoids cause exaggerated cardiovascular responses to novel stress, elevations in baseline blood pressure, and increased risk for cardiovascular disease. We hypothesized that elevated corticosterone (Cort) within the dorsal hindbrain (DHB) would: 1) enhance arterial pressure and neuroendocrine responses to novel and repeated restraint stress, 2) ...
متن کاملAngiotensin II type 1 receptor blocker losartan attenuates locomotor, anxiety-like behavior and passive avoidance learning deficits in a sub-chronic stress model
Objective(s): Stress alters sensory and cognitive function in humans and animals. Angiotensin (AT) receptors have demonstrated well-established interactions in sets of physiological phenomena. AT1 receptors can play a part in stress-induced activation of hypothalamic-pituitary-adrenal (HPA) axis; besides angiotensinergic neurotransmission plays a pivotal role in stress-evoked physiological resp...
متن کاملChronic activation of dorsal hindbrain corticosteroid receptors augments the arterial pressure response to acute stress.
Augmented cardiovascular responses to acute stress can predict cardiovascular disease in humans. Chronic systemic increases in glucocorticoids produce enhanced cardiovascular responses to psychological stress; however, the site of action is unknown. Recent evidence indicates that glucocorticoids can act within the dorsal hindbrain to modulate cardiovascular function. Therefore, we tested the hy...
متن کاملGlucocorticoid receptors in the prefrontal cortex regulate dopamine efflux to stress via descending glutamatergic feedback to the ventral tegmental area.
Enhanced dopamine (DA) efflux in the medial prefrontal cortex (mPFC) is a well-documented response to acute stress. We have previously shown that glucocorticoid receptors in the mPFC regulate stress-evoked DA efflux but the underlying mechanism is unknown. DA neurons in the ventral tegmental area (VTA) receive excitatory input from and send reciprocal projections to the mPFC. We hypothesize tha...
متن کاملRole of glucocorticoids in tuning hindbrain stress integration.
The nucleus of the solitary tract (NTS) is a critical integrative site for coordination of autonomic and endocrine stress responses. Stress-excitatory signals from the NTS are communicated by both catecholaminergic [norepinephrine (NE), epinephrine (E)] and noncatecholaminergic [e.g., glucagon-like peptide-1 (GLP-1)] neurons. Recent studies suggest that outputs of the NE/E and GLP-1 neurons of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 296 5 شماره
صفحات -
تاریخ انتشار 2009